IRE1α/XBP1s branch of UPR links HIF1α activation to mediate ANGII-dependent endothelial dysfunction under particulate matter (PM) 2.5 exposure

UPR 的 IRE1α/XBP1s 分支关联 HIF1α 激活,从而介导颗粒物 (PM) 2.5 暴露下的 ANGII 依赖性内皮功能障碍

阅读:7
作者:Xiuduan Xu, Aodeng Qimuge, Hongli Wang, Chen Xing, Ye Gu, Shasha Liu, Huan Xu, Meiru Hu, Lun Song

Abstract

Short- and long-term exposure to particulate matter (PM) 2.5 instigates adverse health effect upon the cardiovascular (CV) system. Disclosing the molecular events by which PM2.5 evokes CV injuries is essential in developing effective risk-reduction strategy. Here we found that rats after intratracheally instillation with PM2.5 displayed increased circulating level of ANGII, the major bioactive peptide in renin-angiotensin-system (RAS), which resulted from the elevation of ANGII production in the vascular endothelium. Further investigations demonstrated that activation of IRE1α/XBP1s branch of unfolded protein response (UPR) was essential for augmented vascular ANGII signaling in response to PM2.5 exposure, whose effects strictly depends on the assembly of XBP1s/HIF1α transcriptional complex. Moreover, ablation of IRE1/XBP1/HIFα-dependent ACE/ANGII/AT1R axis activation inhibited oxidative stress and proinflammatory response in the vascular endothelial cells induced by PM2.5. Therefore, we conclude that PM2.5 exposure instigates endoplasmic reticulum instability, leading to the induction of IRE1α/XBP1s branch of UPR and links HIF1α transactivation to mediate ANGII-dependent endothelial dysfunction. Identifying novel therapeutic targets to alleviate ER stress and restore local RAS homeostasis in the endothelium may be helpful for the management of PM2.5-induced CV burden.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。