Cancer-associated fibroblasts as cellular vehicles in endometrial cancer cell migration

癌症相关成纤维细胞作为子宫内膜癌细胞迁移的细胞载体

阅读:8
作者:Yap Chee Voon, Intan Sofia Omar, Ming-Heng Wu, Nur Akmarina B M Said, Ivy Chung

Abstract

Cell motility is a critical step in the metastasis cascade. However, the role of cancer-associated fibroblasts (CAFs) in facilitating endometrial cancer (EC) cell motility remains unclear. The present study aimed to investigate the role of CAFs in EC motility in a 3D environment. A co-culture model was established using an EC cell line (ECC-1) and CAFs on a Matrigel® matrix and compared to the respective individual monocultures. It was demonstrated that endometrial CAFs increased the motility of the EC cell line, compared with the monoculture. Using live cell imaging, CAFs were observed to form cell projections that served as contact guidance for ECC-1 cell locomotion in the spheroid formation process. These effects were specific to CAFs, as fibroblasts isolated from benign endometrial tissue samples did not form cell projections. Molecular analysis revealed that RhoA/Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) signaling activation partly contributed to CAF-mediated ECC-1 cell migration. The presence of Matrigel® increased the mRNA expression of RhoA, and the mRNA and protein expression levels of its downstream effectors, ROCK1 and p-MLC, respectively, in the ECC-1 and CAF co-culture, as well as the ECC-1 and CAF monocultures. Interestingly, high phosphorylation levels of myosin light chain mediated the activation of RhoA/ROCK1 signaling in the ECC-1 and CAF co-culture. The ROCK1 inhibitor Y-27632 attenuated the motility of tumor cells in ECC-1 and CAF co-cultures. However, similar treatment led to a significant inhibition in the motility of the CAF monoculture, but not the ECC-1 monoculture. Moreover, tumor spheroid formation was inhibited due to a reduction in stress fiber formation in ECC-1 and CAF co-cultures. Altogether, these findings suggest that the regulation of the RhoA/ROCK1 signaling pathway is required for CAFs to serve as cellular vehicles in order for EC cells to migrate and form spheroids in a 3D environment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。