ATBF1 is a potential diagnostic marker of histological grade and functions via WNT5A in breast cancer

ATBF1 是乳腺癌组织学等级的潜在诊断标记物,并通过 WNT5A 发挥作用

阅读:8
作者:Mei Li, Yanan Zheng, Xujun Li, Xiaohan Shen, Tingxia Zhang, Bowen Weng, Haijiao Mao, Jiyuan Zhao

Background

Histological grade has been demonstrated to be an important factor of breast cancer outcome and is associated with cell differentiation and is currently being evaluated via H&E-stained sections. Molecular biomarkers are essential to improve the accuracy of histological grading. ATBF1, a large transcription factor, has been considered a tumor suppressor gene with frequent mutations or deletions in multiple cancers. In breast cancer, ATBF1 was reported to function in cell differentiation and mammary development. However, its role in the clinic has rarely been reported.

Conclusion

The results indicated that ATBF1 expression might be a useful diagnostic marker associated with histological grade and breast cancer malignancy. WNT5A and its signaling pathway are novel mechanisms by which ATBF1 contributes to breast cancer tumorigenesis.

Methods

Breast cancer tissues (BCTs) and adjacent noncancerous tissues (ANCTs) were collected to analyze the expression of ATBF1 at the mRNA and protein levels. Three anti-ATBF1 antibodies recognizing independent peptides of ATBF1 (N-terminal end, middle region and C-terminal end) were applied for IHC staining. Small interfering RNA (siRNA) was used to silence ATBF1 expression and to investigate the roles of ATBF1 in MCF7 cells. Microarrays were introduced to analyze the differentially expressed genes, enriched GO terms and KEGG terms regulated by ATBF1 and its potential downstream genes, which were further confirmed in vitro and in clinical samples.

Results

The expression of ATBF1 was reduced in BCTs at both the mRNA and protein levels compared with that in ANCTs. ATBF1 protein was predominantly localized in the nucleus of ANCTs but in the cytoplasm of BCTs. Both the mRNA and protein levels of ATBF1 were significantly correlated with histological grade. Consistently, knockdown of ATBF1 increased stemness marker expression and reduced differentiation markers in vitro. Further analysis identified WNT5A as an essential downstream gene of ATBF1 in breast cancer cells. Treatment of WNT5A disrupted cell proliferation induced by ATBF1 silencing. In BCTs, a significant correlation was observed between the expression of WNT5A and ATBF1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。