Insulin Treatment Forces Arteriogenesis in Diabetes Mellitus by Upregulation of the Early Growth Response-1 (Egr-1) Pathway in Mice

胰岛素治疗通过上调小鼠早期生长反应-1 (Egr-1) 通路促进糖尿病动脉生成

阅读:4
作者:Senthilkumar Thulasingam, Sundar Krishnasamy, David Raj C, Manuel Lasch, Srinivasan Vedantham, Elisabeth Deindl

Abstract

The process of arteriogenesis is severely compromised in patients with diabetes mellitus (DM). Earlier studies have reported the importance of Egr-1 in promoting collateral outward remodeling. However, the role of Egr-1 in the presence of DM in outward vessel remodeling was not studied. We hypothesized that Egr-1 expression may be compromised in DM which may lead to impaired collateral vessel growth. Here, we investigated the relevance of the transcription factor Egr-1 for the process of collateral artery growth in diabetic mice. Induction of arteriogenesis by femoral artery ligation resulted in an increased expression of Egr-1 on mRNA and protein level but was severely compromised in streptozotocin-induced diabetic mice. Diabetes mellitus mice showed a significantly reduced expression of Egr-1 endothelial downstream genes Intercellular Adhesion Molecule-1 (ICAM-1) and urokinase Plasminogen Activator (uPA), relevant for extravasation of leukocytes which promote arteriogenesis. Fluorescent-activated cell sorting analyses confirmed reduced leukocyte recruitment. Diabetes mellitus mice showed a reduced expression of the proliferation marker Ki-67 in growing collaterals whose luminal diameters were also reduced. The Splicing Factor-1 (SF-1), which is critical for smooth muscle cell proliferation and phenotype switch, was found to be elevated in collaterals of DM mice. Treatment of DM mice with insulin normalized the expression of Egr-1 and its downstream targets and restored leukocyte recruitment. SF-1 expression and the diameter of growing collaterals were normalized by insulin treatment as well. In summary, our results showed that Egr-1 signaling was impaired in DM mice; however, it can be rescued by insulin treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。