Mesopore Controls the Responses of Blood Clot-Immune Complex via Modulating Fibrin Network

中孔通过调节纤维蛋白网络控制血凝块-免疫复合物的反应

阅读:4
作者:Shiyu Wu, Zhengjie Shan, Lv Xie, Mengxi Su, Peisheng Zeng, Peina Huang, Lingchan Zeng, Xinyue Sheng, Zhipeng Li, Gucheng Zeng, Zhuofan Chen, Zetao Chen

Abstract

Formation of blood clots, particularly the fibrin network and fibrin network-mediated early inflammatory responses, plays a critical role in determining the eventual tissue repair or regeneration following an injury. Owing to the potential role of fibrin network in mediating clot-immune responses, it is of great importance to determine whether clot-immune responses can be regulated via modulating the parameters of fibrin network. Since the diameter of D-terminal of a fibrinogen molecule is 9 nm, four different pore sizes (2, 8, 14, and 20 nm) are rationally selected to design mesoporous silica to control the fibrinogen adsorption and modulate the subsequent fibrin formation process. The fiber becomes thinner and the contact area with macrophages decreases when the pore diameters of mesoporous silica are greater than 9 nm. Importantly, these thinner fibers grown in pores with diameters larger than 9 nm inhibit the M1-polorazation of macrophages and reduce the productions of pro-inflammatory cytokines and chemokines by macrophages. These thinner fibers reduce inflammation of macrophages through a potential signaling pathway of cell adhesion-cytoskeleton assembly-inflammatory responses. Thus, the successful regulation of the clot-immune responses via tuning of the mesoporous pore sizes indicates the feasibility of developing advanced clot-immune regulatory materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。