miR‑30a‑5p induces the adipogenic differentiation of bone marrow mesenchymal stem cells by targeting FAM13A/Wnt/β‑catenin signaling in aplastic anemia

miR-30a-5p 通过靶向 FAM13A/Wnt/β-catenin 信号诱导再生障碍性贫血中的骨髓间充质干细胞脂肪形成分化

阅读:6
作者:Enbo Wang #, Yunyan Zhang #, Rongmei Ding, Xiaohua Wang, Shumin Zhang, Xinghua Li

Abstract

Aplastic anemia (AA) is a bone marrow failure syndrome with high morbidity and mortality. Bone marrow (BM)‑mesenchymal stem cells (MSCs) are the main components of the BM microenvironment, and dysregulation of BM‑MSC adipogenic differentiation is a pathologic hallmark of AA. MicroRNAs (miRNAs/miRs) are crucial regulators of multiple pathological processes such as AA. However, the role of miR‑30a‑5p in the modulation of BM‑MSC adipogenic differentiation in AA remains unclear. The present study aimed to explore the effect of miR‑30a‑5p on AA BM‑MSC adipogenic differentiation and the underlying mechanism. The levels of miR‑30a‑5p expression and family with sequence similarity 13, member A (FAM13A) mRNA expression in BM‑MSCs were quantified using reverse transcription‑quantitative (RT‑q) PCR. The mRNA expression levels of adipogenesis‑associated factors [fatty acid‑binding protein 4 (FABP4), lipoprotein lipase (LPL), perilipin‑1 (PLIN1), peroxisome proliferator‑activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα)] were analyzed using RT‑qPCR. Lipid droplet accumulation was evaluated using Oil Red O staining in BM‑MSCs. The interaction between miR‑30a‑5p and the FAM13A 3'‑untranslated region was identified by TargetScan, and a dual‑luciferase reporter assay was used to confirm the interaction. The expression levels of FAM13A and Wnt/β‑catenin pathway‑related proteins were examined via western blotting. The results showed that miR‑30a‑5p expression levels were significantly elevated in BM‑MSCs from patients with AA compared with those in control subjects (iron deficiency anemia). miR‑30a‑5p expression levels were also significantly increased in adipose‑induced BM‑MSCs in a time‑dependent manner. miR‑30a‑5p significantly promoted AA BM‑MSC adipogenic differentiation, and significantly enhanced the mRNA expression levels of FABP4, LPL, PLIN1, PPARγ and C/EBPα as well as lipid droplet accumulation. miR‑30a‑5p was also demonstrated to target FAM13A in AA BM‑MSCs. FAM13A significantly reduced BM‑MSC adipogenic differentiation by activating the Wnt/β‑catenin signaling pathway. In conclusion, miR‑30a‑5p was demonstrated to serve a role in AA BM‑MSC adipogenic differentiation by targeting the FAM13A/Wnt/β‑catenin signaling pathway. These findings suggest that miR‑30a‑5p may be a therapeutic target for AA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。