Case Report: Whole-Exome Sequencing-Based Copy Number Variation Analysis Identified a Novel DRC1 Homozygous Exon Deletion in a Patient With Primary Ciliary Dyskinesia

病例报告:基于全外显子组测序的拷贝数变异分析在原发性纤毛运动障碍患者中发现了新的 DRC1 纯合外显子缺失

阅读:4
作者:Ying Liu, Cheng Lei, Rongchun Wang, Danhui Yang, Binyi Yang, Yingjie Xu, Chenyang Lu, Lin Wang, Shuizi Ding, Ting Guo, Shaokun Liu, Hong Luo

Conclusion

This report identifies a novel DRC1 disease-associated variant by WES-based CNV analysis from a highly suspected PCD patient with MMAF. Our findings not only expand the genetic spectrum of PCD with MMAF but suggest that in combination with CNV analysis might improve the efficiency of genetic tests.

Methods

We identified the CNVs using the "Exomedepth" package in an undiagnosed PCD patient with a negative result through routine WES analysis. RNA isolation, PCR amplification, and Sanger sequencing were used to confirm the variant. High-speed video microscopy analysis (HSVA) and immunofluorescence analysis were applied to detect the functional and structural deficiency of nasal cilia and sperm flagella. Papanicolaou staining was employed to characterize the morphology of sperm flagella.

Objective

Whole-exome sequencing (WES) based copy number variation (CNV) analysis has been reported to improve the diagnostic rate in rare genetic diseases. In this study, we aim to find the disease-associated variants in a highly suspected primary ciliary dyskinesia (PCD) patient without a genetic diagnosis by routine WES analysis.

Results

NC_000002.11(NM_145038.5): g.26635488_26641606del, c.156-1724_244-2550del, r.156_243del, p. (Glu53Asnfs*13), a novel DRC1 homozygous CNV, was identified by WES-based CNV analysis rather than routine variants calling, in a patient from a non-consanguineous family. HSVA results showed no significant change in ciliary beating frequency but with reduced beating amplitude compared with normal control, and his spermatozoa were almost immotile. The diagnosis of multiple morphological abnormalities of the sperm flagella (MMAF) was established through sperm motility and morphology analysis. PCR amplification and Sanger sequencing confirmed the novel variant of DRC1. Immunofluorescence showed that both cilia and sperm flagella were deficient in protein expression related to the dynein regulatory complex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。