Mucous cell histopathology and label-free quantitative proteomic analysis of skin mucus in fat greenling (Hexagrammos otakii) infected with Vibrio harveyi

感染哈维氏弧菌的肥六线鱼(Hexagrammos otakii)的粘液细胞组织病理学和非标记定量蛋白质组学分析

阅读:7
作者:Xiaoyan Wei, Yanyan Shi, Shuai Wang, Hui Liu, Zheng Zhang, Lina Yu, Wenyuan Hua, Dandan Cui, Yan Chen, Xuejie Li, Wei Wang

Abstract

Hexagrammos otakii is favored by consumers and aquaculture practitioners because of its strong adaptability and fast growth. However, recently, frequent outbreaks of diseases in the breeding of H. otakii have led to significant economic losses, especially due to bacterial diseases, which limit the healthy breeding of H. otakii. As a luminescent Gram-negative bacterium, Vibrio harveyi is the main pathogenic bacteria of H. otakii. In this study, the histopathology and label-free quantitative proteomics analysis were performed to reveal the changes of skin mucus proteins in H. otakii after infection with V. harveyi. The histopathological changes in the skin of H. otakii showed that when the bacteria were injected into the epithelial cells, it caused an increase in the number of mucous cells and a certain degree of damage and deformation in skin. Moreover, the quantitative proteomics analysis revealed a total of 364 differentially expressed proteins (DEPs), and these DEPs were found to be involved in environmental information processing, metabolism, infectious diseases: bacteria, replication and repair. More importantly, the enrichment analysis of the DEPs revealed that these different proteins were mainly targeted immune-related pathways. After infection of bacteria, the host's immune ability will be weakened, causing V. harveyi to enter the organism more easily, resulting in increased mucus in H. otakii, which will eventually lead to a decline in its physical function. These results provided an insight into a series of physiological changes after the bacterial infection of fish at the proteomic level and basic data for further exploration of the potential mechanism of skin mucus. Taken together, the results indicated more opportunities for the future designs and discoveries of effective antibacterial vaccines and antibacterial drugs for H. otakii.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。