BRAF-Inhibitor-Induced Metabolic Alterations in A375 Melanoma Cells

BRAF 抑制剂诱导的 A375 黑色素瘤细胞代谢改变

阅读:8
作者:Prashant Karki, Shayne Sensenbach, Vahideh Angardi, Mehmet A Orman

Abstract

Acquired drug tolerance has been a major challenge in cancer therapy. Recent evidence has revealed the existence of slow-cycling persister cells that survive drug treatments and give rise to multi-drug-tolerant mutants in cancer. Cells in this dynamic persister state can escape drug treatment by undergoing various epigenetic changes, which may result in a transient metabolic rewiring. In this study, with the use of untargeted metabolomics and phenotype microarrays, we characterize the metabolic profiles of melanoma persister cells mediated by treatment with vemurafenib, a BRAF inhibitor. Our findings demonstrate that metabolites associated with phospholipid synthesis, pyrimidine, and one-carbon metabolism and branched-chain amino acid metabolism are significantly altered in vemurafenib persister cells when compared to the bulk cancer population. Our data also show that vemurafenib persisters have higher lactic acid consumption rates than control cells, further validating the existence of a unique metabolic reprogramming in these drug-tolerant cells. Determining the metabolic mechanisms underlying persister cell survival and maintenance will facilitate the development of novel treatment strategies that target persisters and enhance cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。