Explainable Tensor Multi-Task Ensemble Learning Based on Brain Structure Variation for Alzheimer's Disease Dynamic Prediction

基于脑结构变化的可解释张量多任务集成学习用于阿尔茨海默病动态预测

阅读:14
作者:Yu Zhang, Tong Liu, Vitaveska Lanfranchi, Po Yang

Abstract

Machine learning approaches for predicting Alzheimer's disease (AD) progression can substantially assist researchers and clinicians in developing effective AD preventive and treatment strategies. This study proposes a novel machine learning algorithm to predict the AD progression utilising a multi-task ensemble learning approach. Specifically, we present a novel tensor multi-task learning (MTL) algorithm based on similarity measurement of spatio-temporal variability of brain biomarkers to model AD progression. In this model, the prediction of each patient sample in the tensor is set as one task, where all tasks share a set of latent factors obtained through tensor decomposition. Furthermore, as subjects have continuous records of brain biomarker testing, the model is extended to ensemble the subjects' temporally continuous prediction results utilising a gradient boosting kernel to find more accurate predictions. We have conducted extensive experiments utilising data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to evaluate the performance of the proposed algorithm and model. Results demonstrate that the proposed model have superior accuracy and stability in predicting AD progression compared to benchmarks and state-of-the-art multi-task regression methods in terms of the Mini Mental State Examination (MMSE) questionnaire and The Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) cognitive scores. Brain biomarker correlation information can be utilised to identify variations in individual brain structures and the model can be utilised to effectively predict the progression of AD with magnetic resonance imaging (MRI) data and cognitive scores of AD patients at different stages.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。