Ultrasonic cavitation induced Vibrio parahaemolyticus entering an apoptosis-like death process through SOS response

超声空化诱导副溶血弧菌通过SOS反应进入类似细胞凋亡的死亡过程

阅读:7
作者:Chunhui Liu, Qi Xu, Jiaqi Ma, Sai Wang, Jiao Li, Xiangzhao Mao

Abstract

As an effective non-thermal sterilization method, ultrasound remains at the level of passive bacterial death despite the initial understanding of its sterilization mechanism. Here, we present the perspective that bacteria can choose to actively enter an apoptosis-like death state in response to external ultrasonic stress. In this study, Vibrio parahaemolyticus exhibited apoptotic markers such as phosphatidylserine ectropion and activated caspases when subjected to ultrasound stress. Additionally, the accumulation of reactive oxygen species (ROS) and enhanced calcium signaling were observed. Further transcriptomic analysis was conducted to investigate the regulatory mechanism of the SOS response in Vibrio parahaemolyticus during an apoptosis-like state. The results showed that the genes encoding the citrate cycle were down-regulated in Vibrio parahaemolyticus cells adapted to ultrasonic stress, leading to an apoptosis-like state and a decrease in production capacity and ability to catabolize carbon dioxide. Furthermore, the level of oxidized glutathione increased, suggesting that the bacteria were engaged in various anti-oxidative stress responses, ultimately leading to apoptosis. Moreover, the ultrasound field activated the regulatory factor CsrA, which facilitates stress survival as cells transition from rapid growth to an apoptotic state through a stringent response and catabolic inhibition system. Parallel reaction monitoring (PRM) revealed that the expression of certain key SOS proteins in Vibrio parahaemolyticus was up-regulated following ultrasound treatment, resulting in a gradual adaptation of the cells to external stress and ultimately leading to active cell death. In conclusion, the biological lethal effect of ultrasound treatment is not solely a mechanical cell necrosis process as traditionally viewed, but also a programmed cell death process regulated by cellular adaptation. This enriched the biological effect pathway of ultrasound sterilization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。