Characterization of BoHV-1 gG-/tk-/gE- Mutant in Differential Protein Expression, Virulence, and Immunity

BoHV-1 gG-/tk-/gE- 突变体的差异蛋白表达、毒力和免疫力的表征

阅读:5
作者:Marawan A Marawan, Mingliang Deng, Chen Wang, Yingyu Chen, Changmin Hu, Jianguo Chen, Xi Chen, Huanchun Chen, Aizhen Guo

Abstract

Infectious bovine rhinotracheitis (IBR), caused by bovine alphaherpesvirus 1 (BoHV-1), is an important disease affecting cattle worldwide resulting in great economic losses. Marker vaccines are effective in controlling infectious diseases including IBR, because they allow the discrimination between the natural infection and the vaccination. Therefore, a triple gene deleted strain BoHV-1 gG-/tk-/gE- was developed and evaluated in vivo and in vitro as a marker vaccine. In cell culture, this triple mutant virus showed significantly slower growth kinetics and smaller plaques when compared to wild-type (wt) BoHV-1 and double mutant BoHV-1 gG-/tk- (p < 0.01). On proteomic level, it revealed downregulation of some virulence related proteins including thymidine kinase, glycoproteins G, E, I, and K when compared to the wt. In vitro, the triple mutant virus showed a significantly lower and shorter viral shedding period (p < 0.001) in calves compared to double mutant. Moreover, the immunized calves with triple mutant virus showed protection rates of 64.2% and 68.6% against wt BoHV-1 and wt BoHV-5 challenge, respectively, without reactivation of latency after dexamethasone injection. In conclusion, BoHV-1 gG-/tk-/gE- is a safer marker vaccine against IBR although its immunogenicity in calves was decreased when compared to double mutant virus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。