TF/FVIIa transactivate PDGFRbeta to regulate PDGF-BB-induced chemotaxis in different cell types: involvement of Src and PLC

TF/FVIIa 转录激活 PDGFRbeta 来调节 PDGF-BB 诱导的不同细胞类型的趋化性:Src 和 PLC 的参与

阅读:4
作者:Agneta Siegbahn, Matilda Johnell, Anna Nordin, Mikael Aberg, Teet Velling

Background

We have previously reported the potentiation of PDGF-BB-induced chemotaxis of fibroblasts, vascular smooth muscle cells, and endothelial cells by FVIIa. Here we studied the role of TF/FVIIa and the induced signaling pathways in regulation of chemotaxis of human monocytes, fibroblasts, and porcine aorta endothelial cells.

Conclusions

The described transactivation is a likely mechanism of TF/FVIIa-mediated regulation of PDGF-BB-induced chemotaxis. Similar behavior of 3 principally different cell types in our experimental setup may reflect a general function of TF in regulation of cell migration.

Results

Human monocytes were obtained by using Ficoll-Paque gradient and the MACS system (for highly purified population), fibroblasts and PAE cells have been characterized previously. Inhibitors of selected signaling intermediates were used, and the effect of TF/FVIIa on the migratory response of all cells to chemotactic agents was analyzed. The induced signaling was studied by immunoprecipitation and Western blotting. TF/FVIIa complex selectively enhanced PDGF-BB-induced chemotaxis in a Src-family, PLC, and PAR-2-dependent manner. Using PAE cells we identified c-Src and c-Yes as the Src-family members activated by TF/FVIIa. We report for the first time the PAR-2 and Src family-dependent transactivation of PDGFRbeta by TF/FVIIa involving phosphorylation of a subset of PDGFRbeta tyrosines. Conclusions: The described transactivation is a likely mechanism of TF/FVIIa-mediated regulation of PDGF-BB-induced chemotaxis. Similar behavior of 3 principally different cell types in our experimental setup may reflect a general function of TF in regulation of cell migration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。