Nuclear factor of activated T-cells, NFATC1, governs FLT3ITD-driven hematopoietic stem cell transformation and a poor prognosis in AML

活化 T 细胞的核因子 NFATC1 控制 FLT3ITD 驱动的造血干细胞转化和 AML 的不良预后

阅读:10
作者:Maria Solovey, Ying Wang, Christian Michel, Klaus H Metzeler, Tobias Herold, Joachim R Göthert, Volker Ellenrieder, Elisabeth Hessmann, Stefan Gattenlöhner, Andreas Neubauer, Dinko Pavlinic, Vladimir Benes, Oliver Rupp, Andreas Burchert

Background

Acute myeloid leukemia (AML) patients with a high allelic burden of an internal tandem duplication (ITD)-mutated FMS-like Tyrosine Kinase-3 (FLT3) have a dismal outcome. FLT3ITD triggers the proliferation of the quiescent hematopoietic stem cell (HSC) pool but fails to directly transform HSCs. While the inflammatory transcription factor nuclear factor of activated T-cells 2 (NFAT2, NFATC1) is overexpressed in AML, it is unknown whether it plays a role in FLT3ITD-induced HSC transformation.

Conclusions

NFATC1 expression causes FLT3ITD-induced transcriptome changes, which are associated with HSC transformation, quizartinib resistance, and a poor prognosis in AML.

Methods

We generated a triple transgenic mouse model, in which tamoxifen-inducible Cre-recombinase targets expression of a constitutively nuclear transcription factor NFATC1 to FLT3ITD positive HSC. Emerging genotypes were phenotypically, biochemically, and also transcriptionally characterized using RNA sequencing. We also retrospectively analyzed the overall survival of AML patients with different NFATC1 expression status.

Results

We find that NFATC1 governs FLT3ITD-driven precursor cell expansion and transformation, causing a fully penetrant lethal AML. FLT3ITD/NFATC1-AML is re-transplantable in secondary recipients and shows primary resistance to the FLT3ITD-kinase inhibitor quizartinib. Mechanistically, NFATC1 rewires FLT3ITD-dependent signaling output in HSC, involving augmented K-RAS signaling and a selective de novo recruitment of key HSC-transforming signaling pathways such as the Hedgehog- and WNT/B-Catenin signaling pathways. In human AML, NFATC1 overexpression is associated with poor overall survival. Conclusions: NFATC1 expression causes FLT3ITD-induced transcriptome changes, which are associated with HSC transformation, quizartinib resistance, and a poor prognosis in AML.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。