Fusion of the β2-adrenergic receptor with either Gαs or βarrestin-2 produces constitutive signaling by each pathway and induces gain-of-function in BEAS-2B cells

β2-肾上腺素受体与 Gαs 或 βarrestin-2 的融合通过各通路产生组成性信号,并诱导 BEAS-2B 细胞获得功能

阅读:3
作者:Emilio Y Lucero-Garcia Rojas, Arfaxad Reyes-Alcaraz, Kehe Ruan, Bradley K McConnell, Richard A Bond

Abstract

The β2AR is a prototypical G protein-coupled receptor (GPCR) known to orchestrate different cellular responses by the stimulation of specific signaling pathways. The best-established signaling pathways for the β2AR are the canonical Gs pathway and the alternative β arrestin 2 (βarr2) pathway. Exploring each pathway separately remains a challenging task due to the dynamic nature of the receptor. Here, we fused the β2AR with its cognate transducers, Gαs and βarr2, using short linkers as a novel approach for restricting the conformation of the receptor and preferentially activating one of its two signaling pathways. We characterized the behavior of our fusion proteins β2AR-Gαs and β2AR-βarr2 in HEK293 cells by measuring their constitutive activity, transducer recruitment, and pharmacological modulation. Our fusion proteins show (a) steric hindrance from the reciprocal endogenous transducers, (b) constitutive activity of the β2AR for the signaling pathway activated by the tethered transducer, and (c) pharmacologic modulation by β2AR ligands. Based on these characteristics, we further explored the possibility of a gain-of-function mechanism in the human lung non-tumorigenic epithelial cell line, BEAS-2B cells. This immortalized human bronchial epithelial cell line has immunomodulatory properties through cytokine release mediated by β2AR stimulation. Our findings suggest that each signaling pathway of the β2AR is biased toward either the Th1 or Th2 inflammatory response suggesting a role in regulating the immune phenotype of respiratory diseases. Our data imply that our fusion proteins can be used as tools to isolate the function elicited by a single signaling pathway in physiologically relevant cell types.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。