Nol9 Is a Spatial Regulator for the Human ITS2 Pre-rRNA Endonuclease-Kinase Complex

Nol9 是人类 ITS2 Pre-rRNA 内切酶激酶复合物的空间调节剂

阅读:6
作者:Jacob Gordon, Monica C Pillon, Robin E Stanley

Abstract

The ribosome plays a universal role in translating the cellular proteome. Defects in the ribosome assembly factor Las1L are associated with congenital lethal motor neuron disease and X-linked intellectual disability disorders, yet its role in processing precursor ribosomal RNA (pre-rRNA) is largely unclear. The Las1L endoribonuclease associates with the Nol9 polynucleotide kinase to form the internal transcribed spacer 2 (ITS2) pre-rRNA endonuclease-kinase machinery. Together, Las1L-Nol9 catalyzes RNA cleavage and phosphorylation to mark the ITS2 for degradation. While ITS2 processing is critical for the production of functional ribosomes, the regulation of mammalian Las1L-Nol9 remains obscure. Here we characterize the human Las1L-Nol9 complex and identify critical molecular features that regulate its assembly and spatial organization. We establish that Las1L and Nol9 form a higher-order complex and identify the regions responsible for orchestrating this intricate architecture. Structural analysis by high-resolution imaging defines the intricate spatial pattern of Las1L-Nol9 within the nucleolar sub-structure linked with late pre-rRNA processing events. Furthermore, we uncover a Nol9-encoded nucleolar localization sequence that is responsible for nucleolar transport of the assembled Las1L-Nol9 complex. Together, these data provide a mechanism for the assembly and nucleolar localization of the human ITS2 pre-rRNA endonuclease-kinase complex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。