Down-regulation of tumor-associated NADH oxidase, tNOX (ENOX2), enhances capsaicin-induced inhibition of gastric cancer cell growth

肿瘤相关 NADH 氧化酶 tNOX (ENOX2) 的下调增强了辣椒素诱导的胃癌细胞生长抑制作用

阅读:8
作者:His-Ming Wang, Show-Mei Chuang, Yu-Ching Su, Yi-Hui Li, Pin Ju Chueh

Abstract

Gastric cancer is a common human malignancy and a major contributor to cancer-related deaths worldwide. Unfortunately, the prognosis of most gastric cancer patients is poor because they are generally diagnosed at a late stage after the cancer has already metastasized. Most current research, therefore, emphasizes selective targeting of cancer cells by apoptosis-inducing agents. One such therapeutic agent is capsaicin, a component of chili peppers that has been shown to possess anti-growth activity against various cancer cell lines. Here, we examined the effect of capsaicin on SNU-1 and TMC-1 gastric cancer cells and found differing outcomes between the two cell lines. Our results show that capsaicin induced significant cytotoxicity with increases in oxidative stress, PARP cleavage, and apoptosis in sensitive SNU-1 cells. In contrast, TMC-1 cells were much less sensitive to capsaicin, exhibiting low cytotoxicity and very little apoptosis in response to capsaicin treatment. Capsaicin-induced apoptosis in SNU-1 cells was associated with down-regulation of tumor-associated NADH oxidase (tNOX) mRNA and protein. On the contrary, tNOX expression was scarcely affected by capsaicin in TMC-1 cells. We further showed that tNOX-knockdown sensitized TMC-1 cells to capsaicin-induced apoptosis and G1 phase accumulation, and led to decreased cell growth, demonstrating that tNOX is essential for cancer cell growth. Collectively, these results indicate that capsaicin induces divergent effects of the growth of gastric cancer cells that parallel its effects on tNOX expression, and demonstrate that forced tNOX down-regulation restored capsaicin-induced growth inhibition in TMC-1 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。