Insights into the Effect of Catalytic Intratumoral Lactate Depletion on Metabolic Reprogramming and Immune Activation for Antitumoral Activity

深入了解肿瘤内催化乳酸耗竭对代谢重编程和免疫激活抗肿瘤活性的影响

阅读:5
作者:Junlong Zhao, Zhimin Tian, Shoujie Zhao, Dayun Feng, Zhixiong Guo, Liangzhi Wen, Yejing Zhu, Fenghua Xu, Jun Zhu, Shouzheng Ma, Jie Hu, Tao Jiang, Yongquan Qu, Dongfeng Chen, Lei Liu

Abstract

Lactate, a characteristic metabolite of the tumor microenvironment (TME), drives immunosuppression and promotes tumor progression. Material-engineered strategies for intratumoral lactate modulations demonstrate their promise for tumor immunotherapy. However, understanding of the inherent interconnections of material-enabled lactate regulation, metabolism, and immunity in the TME is scarce. To address this issue, urchin-like catalysts of the encapsulated Gd-doped CeO2 , syrosingopine, and lactate oxidase are used in ZIF-8 (USL, where U, S, and L represent the urchin-like Gd-doped CeO2 @ZIF-8, syrosingopine, and lactate oxidase, respectively) and orthotopic tumor models. The instructive relationships of intratumoral lactate depletion, metabolic reprogramming, and immune activation for catalytic immunotherapy of tumors is illustrated. The catalysts efficiently oxidize intratumoral lactate and significantly promote tumor cell apoptosis by in situ-generated ·OH, thereby reducing glucose supply and inducing mitochondrial damage via lactate depletion, thus reprogramming glycometabolism. Subsequently, such catalytic metabolic reprogramming evokes both local and systemic antitumor immunity by activating M1-polarizaed macrophages and CD8+ T cells, leading to potent antitumor immunity. This study provides valuable mechanistic insights into material-interfered tumor therapy through intratumoral lactate depletion and consequential connection with metabolic reprogramming and immunity remodeling, which is thought to enhance the efficacy of immunotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。