Programmed death-1 pathway limits central nervous system inflammation and neurologic deficits in murine experimental stroke

程序性死亡-1 通路限制小鼠实验性中风中的中枢神经系统炎症和神经系统缺陷

阅读:5
作者:Xuefang Ren, Kozaburo Akiyoshi, Arthur A Vandenbark, Patricia D Hurn, Halina Offner

Background and purpose

Evaluation of infarct volumes and infiltrating immune cell populations in mice after middle cerebral artery occlusion strongly implicates a mixture of both pathogenic and regulatory immune cell subsets that affect stroke outcome. Our goal was to evaluate the contribution of the well-described coinhibitory pathway, programmed death (PD)-1, to the development of middle cerebral artery occlusion.

Conclusions

Our novel observations are the first to implicate PD-1 signaling as a major protective pathway for limiting central nervous system inflammation in middle cerebral artery occlusion. This inhibitory circuit would likely be pivotal in reducing stroke-associated Toll-like receptor-2- and Toll like receptor-4-mediated release of neurotoxic factors by activated central nervous system microglia.

Methods

Infarct volumes, functional outcomes, and effects on infiltrating immune cell populations were compared in wild-type C57BL/6 versus PD-1-deficient mice after 60 minutes middle cerebral artery occlusion and 96 hours reperfusion.

Purpose

Evaluation of infarct volumes and infiltrating immune cell populations in mice after middle cerebral artery occlusion strongly implicates a mixture of both pathogenic and regulatory immune cell subsets that affect stroke outcome. Our goal was to evaluate the contribution of the well-described coinhibitory pathway, programmed death (PD)-1, to the development of middle cerebral artery occlusion.

Results

The results clearly demonstrate a previously unrecognized activity of the PD-1 pathway to limit infarct volume, recruitment of inflammatory cells from the periphery, activation of macrophages and central nervous system microglia, and functional neurological deficits. These regulatory functions were associated with increased percentages of circulating PD-ligand-1 and PD-ligand-2 expressing CD19(+) B-cells in blood, the spleen, and central nervous system with the capacity to inhibit activation of inflammatory T-cells and central nervous system macrophages and microglial cells through upregulated PD-1. Conclusions: Our novel observations are the first to implicate PD-1 signaling as a major protective pathway for limiting central nervous system inflammation in middle cerebral artery occlusion. This inhibitory circuit would likely be pivotal in reducing stroke-associated Toll-like receptor-2- and Toll like receptor-4-mediated release of neurotoxic factors by activated central nervous system microglia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。