Inhibition of Ezrin suppresses cell migration and invasion in human nasopharyngeal carcinoma

抑制埃兹林可抑制人鼻咽癌细胞的迁移和侵袭

阅读:5
作者:Yuanyuan Tang, Xiuzhen Sun, Shen Yu, Xu Bie, Jizhe Wang, Lidan Ren

Abstract

Nasopharyngeal carcinoma (NPC) is one of the most severe types of malignant cancer of the head and neck as it is difficult to treat. Ezrin is highly expressed in numerous types of cancer. However, the role of Ezrin in NPC has not been fully investigated and further studies are required in order to uncover its therapeutic potential in the treatment of NPC. The aim of the present study was to investigate the expression of Ezrin in human NPC and to evaluate the effect of knockdown of Ezrin using small interfering (si)-RNA on NPC cell migration and invasion. The expression levels of Ezrin were determined using reverse transcription-quantitative polymerase chain reaction, immunohistochemical staining and western blotting. Following transfection of Ezrin-siRNA into NPC cells, cell invasion and migration were analyzed and the mRNA expression levels of matrix metalloproteinase(MMP)-2 and MMP9 were determined. The results revealed that the expression of Ezrin was markedly increased in human NPC tissue samples compared with normal adjacent nasopharyngeal tissue samples. Ezrin was also highly expressed in the NPC cell lines 6-10B and C6661 when compared with the normal nasopharyngeal cell line NP69. Transfection of NPC cell lines with siRNA targeting Ezrin significantly inhibited NPC cell migration and invasion, and downregulated the mRNA expression level of MMP2; however, no effect was observed on MMP9 mRNA expression. At the same time, knockdown of Ezrin significantly decreased the expression levels of phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (Akt), which downregulated the mRNA expression of MMP2. In conclusion, the results revealed that knockdown of Ezrin suppressed NPC migration and invasion by reducing the mRNA expression of MMP2 via the PI3K/Akt signaling pathway. These results highlight the important role of Ezrin in NPC cell migration and invasion. In addition, they indicate that silencing of Ezrin may serve as a potential therapeutic strategy to treat human NPC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。