GD2 ganglioside specific antibody treatment downregulates PI3K/Akt/mTOR signaling network in human neuroblastoma cell lines

GD2 神经节苷脂特异性抗体治疗下调人类神经母细胞瘤细胞系中的 PI3K/Akt/mTOR 信号网络

阅读:4
作者:Małgorzata Durbas, Irena Horwacik, Elżbieta Boratyn, Elżbieta Kamycka, Hanna Rokita

Abstract

Mechanisms leading to inhibitory effects of an anti-GD2 ganglioside (GD2) 14G2a mouse monoclonal antibody (mAb) and PI3K/Akt/mTOR pathway inhibitors on human neuroblastoma cell survival were studied in vitro. We have recently shown on IMR-32, CHP‑134, and LA-N-1 neuroblastoma cells that targeting GD2 with the mAb decreases cell viability of the cell lines. In this study we used cytotoxicity assays, proteomic arrays and immunoblotting to evaluate the response of the three cell lines to the anti‑GD2 14G2a mAb and specific PI3K/Akt/mTOR pathway inhibitors. We show here that the mAb modulates intracellular signal transduction through changes in several kinases and their substrates phosphorylation. More detailed analysis of the PI3K/Akt/mTOR pathway showed significant decrease in activity of Akt, mTOR, p70 S6 and 4E-BP1 proteins and transient increase in PTEN (a suppressor of the pathway), leading to inhibition of the signaling network responsible for stimulation of translation and proliferation. Additionally, combining the GD2-specific 14G2a mAb with an Akt inhibitor (perifosine), dual mTOR/PI3K inhibitors (BEZ-235 and SAR245409), and a pan-PI3K inhibitor (LY294002) was shown to enhance cytotoxic effects against IMR-32, CHP‑134 and LA-N-1 cells. Our study extends knowledge on mechanisms of action of the 14G2a mAb on the neuroblastoma cells. Also, it stresses the need for further delineation of molecular signal orchestration aimed at more reasonable selection of drugs to target key cellular pathways in quest for better cure for neuroblastoma patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。