Uptake and intracellular fate of multifunctional nanoparticles: a comparison between lipoplexes and polyplexes via quantum dot mediated Förster resonance energy transfer

多功能纳米粒子的吸收和细胞内命运:通过量子点介导的 Förster 共振能量转移对脂质复合物和聚合物复合物进行比较

阅读:13
作者:Yun Wu, Yi-Ping Ho, Yicheng Mao, Xinmei Wang, Bo Yu, Kam W Leong, L James Lee

Abstract

Lipoplexes and polyplexes represent the two major nanocarrier systems for nucleic acid delivery. Previous studies examining their uptake and intracellular unpacking rely on organic fluorophores fraught with low signal intensity and photobleaching. In this work quantum dot mediated Förster resonance energy transfer (QD-FRET) was first used to study and compare the cellular uptake and the intracellular fate of oligodeoxynucelotide (ODN)-based lipoplexes and polyplexes. QD605-amine and Cy5-labeled ODN (Cy5-GTI2040) were chosen as the FRET pair. By adjusting the lipid/ODN ratio of lipoplexes and the nitrogen/phosphate (N/P) ratio of polyplexes, lipoplexes and polyplexes with comparable physical properties were produced. The biological activities of dual-labeled lipoplexes and polyplexes remained unaltered compared to their unlabeled counterparts as evidenced by their comparable antisense activities against protein R2 in KB cells. Flow cytometry and confocal microscopy revealed similar pattern of uptake for these two types of nanoparticles, although polyplexes had a higher dissociation rate than lipoplexes in KB cells. We demonstrate that QD-FRET is a sensitive tool to study the uptake and intracellular unpacking of lipoplexes and polyplexes, which may help optimize their formulations for various theranostics applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。