A Portable and Disposable Electrochemical Sensor Utilizing Laser-Scribed Graphene for Rapid SARS-CoV-2 Detection

利用激光刻划石墨烯的便携式一次性电化学传感器可快速检测 SARS-CoV-2

阅读:9
作者:Runzhong Wang, Bicheng Zhu, Paul Young, Yu Luo, John Taylor, Alan J Cameron, Christopher J Squire, Jadranka Travas-Sejdic

Abstract

The COVID-19 pandemic caused by the virus SARS-CoV-2 was the greatest global threat to human health in the last three years. The most widely used methodologies for the diagnosis of COVID-19 are quantitative reverse transcription polymerase chain reaction (RT-qPCR) and rapid antigen tests (RATs). PCR is time-consuming and requires specialized instrumentation operated by skilled personnel. In contrast, RATs can be used in-home or at point-of-care but are less sensitive, leading to a higher rate of false negative results. In this work, we describe the development of a disposable, electrochemical, and laser-scribed graphene-based biosensor strips for COVID-19 detection that exploits a split-ester bond ligase system (termed 'EsterLigase') for immobilization of a virus-specific nanobody to maintain the out-of-plane orientation of the probe to ensure the efficacy of the probe-target recognition process. An anti-spike VHH E nanobody, genetically fused with the EsterLigase domain, was used as the specific probe for the spike receptor-binding domain (SP-RBD) protein as the target. The recognition between the two was measured by the change in the charge transfer resistance determined by fitting the electrochemical impedance spectroscopy (EIS) spectra. The developed LSG-based biosensor achieved a linear detection range for the SP-RBD from 150 pM to 15 nM with a sensitivity of 0.0866 [log(M)]-1 and a limit of detection (LOD) of 7.68 pM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。