Mechanisms of PAR-1 mediated kinase receptor transactivation: Smad linker region phosphorylation

PAR-1 介导激酶受体转录激活的机制:Smad 连接区磷酸化

阅读:5
作者:Danielle Kamato, Hang Ta, Rizwana Afroz, Suowen Xu, Narin Osman, Peter J Little

Abstract

Protease activated receptors (PARs) transactivate both epidermal growth factor receptors (EGFR) and transforming growth factor (TGF)-β receptors (TGFBR1) in vascular smooth muscle leading to the increased expression of genes (CHST11 and CHSY1) which are rate limiting for the enzymes that mediate hyperelongation of glycosaminoglycan (GAG) chains on the lipid-binding proteoglycan, biglycan. This is an excellent model to investigate mechanisms of transactivation as the processes are biochemically distinct. EGFR transactivation is dependent on the classical matrix metalloprotease (MMP) based triple membrane bypass mechanism and TGFBR1 transactivation is dependent on Rho/ROCK signalling and integrins. We have shown that all kinase receptor signalling is targeted towards phosphorylation of the linker region of the transcription factor, Smad2. We investigated the mechanisms of thrombin mediated kinase receptor transactivation signalling using anti-phospho antibodies and Western blotting and gene expression by RT-PCR. Thrombin stimulation of phospho-Smad2 (Ser 245/250/255) and of phospho-Smad2(Thr220) via EGFR transactivation commences quickly and extends out to at least 4 h whereas transactivation via TGFBR1 is delayed for 120 min but also persists for at least 4 h. Signalling of thrombin stimulated Smad linker region phosphorylation is approximately equally inhibited by the MMP inhibitor, GM6001 and the ROCK inhibitor, Y27632, and similarly expression of CHST11 and CHSY1 is approximately equally inhibited by GM6001 and Y27632. The data establishes Smad linker region phosphorylation as a central target of all transactivation signalling of GAG gene expression and thus an upstream kinase may be a target to prevent all transactivation signalling and its pathophysiological consequences.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。