Ion permeation controlled by hydrophobic residues and proton binding in the proton-activated chloride channel

质子激活氯通道中疏水残基和质子结合控制离子渗透

阅读:6
作者:Ruiqi Cai, Jingfeng Tang, Xing-Zhen Chen

Abstract

Recently identified proton-activated chloride channel (PAC) contains two transmembrane helices (S1-S2) and is involved in lysosome function, hypoxia adaption, stroke, and carcinogenesis. Although a PAC structure was recently resolved, its gating and activation mechanisms remained largely unknown. By the two-electrode voltage clamp electrophysiology in Xenopus oocytes, we found that the hydrophobicity of site 304 at fenestrations, but not that of neighbor sites, is important for maintaining PAC at a closed state at pH 7.5. When activated at acidic pH, PAC activity significantly increased with the hydrophilicity of site 307 within S2, but not with that of neighbor sites, suggesting that 307 acts as an activation gate. We identified six conserved protonatable residues critical for proton-induced activation, consistent with structural studies. Our study depicted a scheme in which proton binding induces conformational changes from the W304-controlled closed state at fenestrations to an activated state controlled by activation gate I307 in helix S2.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。