CircSERPINE2 weakens IL-1β-caused apoptosis and extracellular matrix degradation of chondrocytes by regulating miR-495/TGFBR2 axis

CircSERPINE2 通过调节 miR-495/TGFBR2 轴减弱 IL-1β 引起的软骨细胞凋亡和细胞外基质降解

阅读:4
作者:Qingpu Zhang, Xiaomiao Qiao, Wenwei Xia

Abstract

The dysregulated circular RNAs (circRNAs) are relevant to the development of osteoarthritis (OA). The circRNA serpin family E member 2 (circSERPINE2) is dysregulated in OA, while the role and mechanism of circSERPINE2 in OA are largely unknown. The aim of our research is to explore how and whether circSERPINE2 regulates interleukin-1β (IL-1β)-caused chondrocyte damage in OA. In the present study, the chondrocytes (CHON-001 cells) were exposed to IL-1β to mimic the injury in OA. CircSERPINE2, microRNA-495 (miR-495) and transforming growth factor-β receptor 2 (TGFBR2) abundances were detected via quantitative reverse-transcription polymerase chain reaction (qRT-PCR) or Western blot. Cell apoptosis was assessed via viability, apoptotic rate and caspase-3 activity. Extracellular matrix was investigated by levels of Sry-type high-mobility-group box 9 (SOX9), collagen type II α 1 (COL2A1) and Aggrecan using Western blot. The interaction among circSERPINE2, miR-495 and TGFBR2 was assessed via dual-luciferase reporter analysis and RNA immunoprecipitation (RIP). The results showed that circSERPINE2 expression was reduced in OA patients and IL-1β-treated chondrocytes. CircSERPINE2 overexpression mitigated IL-1β-caused apoptosis and extracellular matrix degradation. miR-495 was targeted by circSERPINE2 and up-regulated in OA patients and IL-1β-treated chondrocytes. miR-495 up-regulation reversed overexpression of circSERPINE2-mediated inhibition of apoptosis and extracellular matrix degradation. TGFBR2 was targeted by miR-495 and lowly expressed in OA patients and IL-1β-treated chondrocytes. CircSERPINE2 could mediate TGFBR2 expression by binding with miR-495. As a conclusion, circSERPINE2 attenuated IL-1β-caused apoptosis and extracellular matrix degradation of chondrocytes by regulating miR-495/TGFBR2 axis, indicating a new target for OA treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。