Centromere DNA Destabilizes H3 Nucleosomes to Promote CENP-A Deposition during the Cell Cycle

着丝粒 DNA 使 H3 核小体不稳定,从而促进细胞周期期间 CENP-A 沉积

阅读:5
作者:Manu Shukla, Pin Tong, Sharon A White, Puneet P Singh, Angus M Reid, Sandra Catania, Alison L Pidoux, Robin C Allshire

Abstract

Active centromeres are defined by the presence of nucleosomes containing CENP-A, a histone H3 variant, which alone is sufficient to direct kinetochore assembly. Once assembled at a location, CENP-A chromatin and kinetochores are maintained at that location through a positive feedback loop where kinetochore proteins recruited by CENP-A promote deposition of new CENP-A following replication. Although CENP-A chromatin itself is a heritable entity, it is normally associated with specific sequences. Intrinsic properties of centromeric DNA may favor the assembly of CENP-A rather than H3 nucleosomes. Here we investigate histone dynamics on centromere DNA. We show that during S phase, histone H3 is deposited as a placeholder at fission yeast centromeres and is subsequently evicted in G2, when we detect deposition of the majority of new CENP-ACnp1. We also find that centromere DNA has an innate property of driving high rates of turnover of H3-containing nucleosomes, resulting in low nucleosome occupancy. When placed at an ectopic chromosomal location in the absence of any CENP-ACnp1 assembly, centromere DNA appears to retain its ability to impose S phase deposition and G2 eviction of H3, suggesting that features within centromere DNA program H3 dynamics. Because RNA polymerase II (RNAPII) occupancy on this centromere DNA coincides with H3 eviction in G2, we propose a model in which RNAPII-coupled chromatin remodeling promotes replacement of H3 with CENP-ACnp1 nucleosomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。