Artesunate Induces Ferroptosis in Hepatic Stellate Cells and Alleviates Liver Fibrosis via the ROCK1/ATF3 Axis

青蒿琥酯通过ROCK1/ATF3轴诱导肝星状细胞铁死亡减轻肝纤维化

阅读:7
作者:Yingqian Wang, Yujia Li, Yangling Qiu, Min Shen, Ling Wang, Jiangjuan Shao, Feng Zhang, Xuefen Xu, Zili Zhang, Mei Guo, Shizhong Zheng

Aims

Development of fibrosis in chronic liver disease requires activation of hepatic stellate cells (HSCs) and leads to a poor outcome. Artesunate (Art) is an ester derivative of artemisinin that can induce ferroptosis in HSCs, and activated transcriptional factor 3 (ATF3) is an ATF/CREB transcription factor that is induced in response to stress. In this study, we examined the role of the Rho-associated protein kinase 1 (ROCK1)/ATF3 axis in Art-induced ferroptosis in HSCs.

Background and aims

Development of fibrosis in chronic liver disease requires activation of hepatic stellate cells (HSCs) and leads to a poor outcome. Artesunate (Art) is an ester derivative of artemisinin that can induce ferroptosis in HSCs, and activated transcriptional factor 3 (ATF3) is an ATF/CREB transcription factor that is induced in response to stress. In this study, we examined the role of the Rho-associated protein kinase 1 (ROCK1)/ATF3 axis in Art-induced ferroptosis in HSCs.

Conclusions

The ROCK1/ATF3 axis was involved in liver fibrosis and regulation of ferroptosis, which provides an experimental basis for further study of Art for the treatment of liver fibrosis.

Methods

HSC activation and ferroptosis were studied in vitro by western blotting, polymerase chain reaction, immunofluorescence, and other assays. ATF3 electrophoretic mobility and ROCK1 protein stability were assayed by western blotting. Immunoprecipitation was used to detect the interaction of ROCK1 and ATF3, as well as ATF3 phosphorylation. A ubiquitination assay was used to verify ROCK1 degradation. Atf3-interfering and Rock1-overexpressing mice were constructed to validate the anti-hepatic fibrosis activity of Art in vivo.

Results

Art induced ferroptosis in HSCs following glutathione-dependent antioxidant system inactivation resulting from nuclear accumulation of unphosphorylated ATF3 mediated by ROCK1-ubiquitination in vitro. Art also decreased carbon tetrachloride-induced liver fibrosis in mice, which was reversed by interfering with Atf3 or overexpressing Rock1. Conclusions: The ROCK1/ATF3 axis was involved in liver fibrosis and regulation of ferroptosis, which provides an experimental basis for further study of Art for the treatment of liver fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。