Identification of AR-V7 downstream genes commonly targeted by AR/AR-V7 and specifically targeted by AR-V7 in castration resistant prostate cancer

鉴定在去势抵抗性前列腺癌中 AR/AR-V7 普遍靶向的 AR-V7 下游基因以及 AR-V7 特异性靶向的 AR-V7 下游基因

阅读:9
作者:Masahiro Sugiura, Hiroaki Sato, Atsushi Okabe, Masaki Fukuyo, Yasunobu Mano, Ken-Ichi Shinohara, Bahityar Rahmutulla, Kosuke Higuchi, Maihulan Maimaiti, Manato Kanesaka, Yusuke Imamura, Tomomi Furihata, Shinichi Sakamoto, Akira Komiya, Naohiko Anzai, Yoshikatsu Kanai, Jun Luo, Tomohiko Ichikawa, Ats

Abstract

Primary prostate cancer (PC) progresses to castration-resistant PC (CRPC) under androgen deprivation therapy, by mechanisms e.g. expression of androgen receptor (AR) splice variant-7 (AR-V7). Here we conducted comprehensive epigenome and transcriptome analyses comparing LNCaP, primary PC cells, and LNCaP95, AR-V7-expressing CRPC cells derived from LNCaP. Of 399 AR-V7 target regions identified through ChIP-seq analysis, 377 could be commonly targeted by hormone-stimulated AR, and 22 were specifically targeted by AR-V7. Among genes neighboring to these AR-V7 target regions, 78 genes were highly expressed in LNCaP95, while AR-V7 knockdown led to significant repression of these genes and suppression of growth of LNCaP95. Of the 78 AR-V7 target genes, 74 were common AR/AR-V7 target genes and 4 were specific AR-V7 target genes; their most suppressed genes by AR-V7 knockdown were NUP210 and SLC3A2, respectively, and underwent subsequent analyses. NUP210 and SLC3A2 were significantly upregulated in clinical CRPC tissues, and their knockdown resulted in significant suppression of cellular growth of LNCaP95 through apoptosis and growth arrest. Collectively, AR-V7 contributes to CRPC proliferation by activating both common AR/AR-V7 target and specific AR-V7 target, e.g. NUP210 and SLC3A2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。