Dynamic differences between DNA damage repair responses in primary tumors and cell lines

原发性肿瘤和细胞系中 DNA 损伤修复反应的动态差异

阅读:6
作者:Collin Gilbreath, Shihong Ma, Lan Yu, Rajni Sonavane, Carlos M Roggero, Anvita Devineni, Ryan Mauck, Neil B Desai, Aditya Bagrodia, Ralf Kittler, Ganesh V Raj, Yi Yin

Abstract

The study of DNA damage repair response (DDR) in prostate cancer is restricted by the limited number of prostate cancer cell lines and lack of surrogates for heterogeneity in clinical samples. Here, we sought to leverage our experience with patient derived explants (PDEs) cultured ex vivo to study dynamics of DDR in primary tumors following application of clinically relevant doses of ionizing radiation (IR) to tumor cells in their native 3-dimensional microenvironment. We compared DDR dynamics between prostate cancer cell lines, PDEs and xenograft derived explants (XDEs) following treatment with IR (2Gy) either alone or in combination with pharmacological modulators of DDR. We have shown that following treatment with 2Gy, DDR can be consistently detected in PDEs from multiple solid tumors, including prostate, kidney, testes, lung and breast, as evidenced by γ-H2AX, 53BP1, phospho-ATM and phospho-DNA-PKcs foci. By examining kinetics of resolution of IR-induced foci, we have shown that DDR in prostate PDEs (complete resolution in 8 h) is much faster than in prostate cancer cell lines (<50% resolution in 8 h). The transcriptional profile of DDR genes following 2Gy IR appears to be distinct between PDEs and cell lines. Pre-treatment with drugs targeting DDR pathways differentially alter the kinetics of DDR in the PDEs and cell lines, as evidenced by altered kinetics of foci resolution. This study highlights the utility of PDEs as a robust model system for short-term evaluation of DDR in primary solid tumors in clinically relevant microenvironment.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。