Multi-Targeted Metabolic Profiling of Carotenoids, Phenolic Compounds and Primary Metabolites in Goji (Lycium spp.) Berry and Tomato (Solanum lycopersicum) Reveals Inter and Intra Genus Biomarkers

枸杞 (Lycium spp.) 浆果和番茄 (Solanum lycopersicum) 中的类胡萝卜素、酚类化合物和初级代谢物的多目标代谢分析揭示了属间和属内的生物标志物

阅读:4
作者:Doriane Dumont, Giorgia Danielato, Annie Chastellier, Laurence Hibrand Saint Oyant, Anne-Laure Fanciullino, Raphaël Lugan

Abstract

Metabolic profile is a key component of fruit quality, which is a challenge to study due to great compound diversity, especially in species with high nutritional value. This study presents optimized analytical methods for metabolic profiling in the fruits of three Solanaceae species: Lycium barbarum, Lycium chinense and Solanumlycopersicum. It includes the most important chemical classes involved in nutrition and taste, i.e., carotenoids, phenolic compounds and primary compounds. Emphasis has been placed on the systematic achievement of good extraction yields, sample stability, and high response linearity using common LC-ESI-TQ-MS and GC-EI-MS apparatuses. A set of 13 carotenoids, 46 phenolic compounds and 67 primary compounds were profiled in fruit samples. Chemometrics revealed metabolic markers discriminating Lycium and Solanum fruits but also Lycium barbarum and Lycium chinense fruits and the effect of the crop environment. Typical tomato markers were found to be lycopene, carotene, glutamate and GABA, while lycibarbarphenylpropanoids and zeaxanthin esters characterized goji (Lycium spp.) fruits. Among the compounds discriminating the Lycium species, reported here for the first time to our knowledge, chlorogenic acids, asparagine and quinic acid were more abundant in Lycium chinense, whereas Lycium barbarum accumulated more lycibarbarphenylpropanoids A-B, coumaric acid, fructose and glucose.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。