The Balance between Orthodontic Force and Radiation in the Jawbone: Microstructural, Histological, and Molecular Study in a Rat Model

颌骨正畸力与辐射之间的平衡:大鼠模型的微观结构、组织学和分子研究

阅读:5
作者:Hadas Dorchin-Ashkenazi, Ravit Ginat-Koton, Yankel Gabet, Yehuda Klein, Stella Chaushu, Hezi Dorchin, Tamar Brosh, Marilena Vered

Abstract

Irradiation of facial bones is associated with a lifelong risk of osteonecrosis. In a rat model, maxillae were exposed to a single 5 Gy dose of external beam radiation and orthodontic force was applied for 2 weeks on the first maxillary molar; control rats were treated identically without radiation. Tooth movement in irradiated jaws was 30% less than in controls, representing radiation-related damage. Micro-CT, histological, and molecular outcomes of orthodontic tooth movement were studied. Microstructurally, bone parameters (trabecular thickness, bone volume fraction, bone mineral density) were significantly affected by orthodontic force but not by radiation. Histological parameters were influenced only by orthodontic force, especially by an increase in osteoclasts. A molecular study revealed a differential distribution of cells expressing pre-osteoclast markers (RANK+-majority, CD11b+, CD14+-minority), with changes being influenced by orthodontic force (increased CD11b+ and CD14+ cells) and also by radiation (decreased RANK+ cells). The activation status of osteoclasts (TRAP staining) showed an orthodontic-force-related increase, which probably could not fully compensate for the radiation-associated impairment. The overall balance showed that orthodontic force had elicited a substantial microstructural, histological, and functional normalization process in irradiated maxillae but a radiation-induced impact was still conspicuous. Additional studies are needed to validate these findings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。