Direct conversion of adult human retinal pigmented epithelium cells to neurons with photoreceptor properties

成人视网膜色素上皮细胞直接转化为具有光感受器特性的神经元

阅读:5
作者:Bo Li, Houbo Jiang, Hong Li, Boyang Zhang, Malcolm Slaughter, Zhen Yan, Jian Feng

Abstract

Degeneration of photoreceptors is a major cause of blindness. Identifying new methods for the generation of photoreceptors offers valuable options for a cell replacement therapy of blindness. Here, we show that primary adult human retinal pigmented epithelium (hRPE) cells were directly converted to postmitotic neurons with various properties of photoreceptors by the neurogenic transcription factor ASCL1 and microRNA124. At Day 8 after the induction of ASCL1 and miRNA124 expression in hRPE cells, 91% of all cells were Tuj1+, and 83% of all cells were MAP2+ neurons. The cone photoreceptor marker L/M-opsin, the rod photoreceptor marker rhodopsin, and the generic photoreceptor marker recoverin were expressed in 76%, 86%, and 92% of all cells, respectively. Real-time quantitative PCR measurements showed significant and continuous increases in the expression of photoreceptor markers phosducin and recoverin, rod cell markers phosphodiesterases 6 b and arrestin S-antigen, and cone cell markers L/M-opsin and S-opsin in three independent lines of primary hRPE cells at different days of transdifferentiation. Transmission electron microscopy of converted neurons showed disc-like structures similar to those found in photoreceptors. While the converted neurons had voltage-dependent Na+, K+, and Ca2+ currents, light-induced change in membrane potential was not detected. The study demonstrates the feasibility of rapid and efficient transdifferentiation of adult hPRE cells to neurons with many properties of photoreceptors. It opens up a new possibility in cell replacement therapy of blindness caused by photoreceptor degeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。