Etoposide-induced protein 2.4 ameliorates high glucose-induced epithelial-mesenchymal transition by activating adenosine monophosphate-activated protein kinase pathway in renal tubular cells

依托泊苷诱导蛋白 2.4 通过激活肾小管细胞中的腺苷单磷酸活化蛋白激酶通路改善高糖诱导的上皮-间质转化

阅读:6
作者:Fan Li, Dongwei Guo, Shufeng Zhi, Keqi Jia, Yuxue Wang, Aobo Zhang, Yuqi Pei, Jun Hao

Abstract

Epithelial-mesenchymal transition (EMT), known as the transition of tubular epithelial cells into fibroblasts, is one of the potential mechanisms of renal fibrosis, which promotes the development of diabetic kidney disease (DKD). Etoposide-induced protein 2.4 (EI24) is known as an endoplasmic reticulum (ER)-localized Bcl-2-binding transmembrane protein with various functions that can affect autophagy, apoptosis and differentiation. However, whether EI24 is involved in EMT of renal tubular epithelial cells and the exact mechanism is still not known. In this study, we first reported that EI24 expression was significantly downregulated in the kidneys of diabetic mice and in high glucose-stimulated HK2 cells. Knockdown of EI24 led to EMT of HK2 cells, as indicated by decreased E-cadherin and increased α-smooth muscle actin (α-SMA). Meanwhile, overexpression of EI24 ameliorated high glucose-induced EMT of HK2 cells via activation of the adenosine monophosphate-activated protein kinase (AMPK) pathway. Then, DNA methyltransferase (DNMT) inhibitor 5-Aza-2'-deoxycytidine (5-Aza) treatment enhanced EI24 expression and alleviated EMT in high glucose-treated HK2 cells and the kidneys of diabetic mice. Furthermore, DNMT1 and DNMT3a upregulation were found to be involved in the decrease of EI24 in high glucose-stimulated HK2 cells. Silencing of DNMT1 and DNMT3a effectively reversed high glucose-induced downregulation of EI24 and aggravation of EMT. Our findings demonstrate that the DNA methyltransferase-regulated EI24 affects EMT of renal tubular cells via AMPK signaling pathway. It is suggested that EI24 may be a potential therapeutic target for diabetic renal injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。