Insulin-like growth factor-binding protein-3 mediates high glucose-induced apoptosis by increasing oxidative stress in proximal tubular epithelial cells

胰岛素样生长因子结合蛋白-3通过增加近端肾小管上皮细胞的氧化应激介导高糖诱导的细胞凋亡

阅读:5
作者:Eun-Gyong Yoo, Woo Jung Lee, Jung Hyun Kim, Hyun-Wook Chae, Se Eun Hyun, Duk Hee Kim, Ho-Seong Kim, Youngman Oh

Abstract

IGF-binding protein-3 (IGFBP-3) is the major circulating carrier protein for IGF, and also acts as a potent antiproliferative agent in various cell types. Recently, IGFBP-3 was reported to mediate high glucose-induced apoptosis in mesangial cells and podocytes. In this study, we investigated the role of IGFBP-3 in high glucose-induced apoptosis in proximal tubular epithelial cells (PTEC). Expression of IGFBP-3 protein and mRNA in a porcine PTEC line (LLC-PK1 cells) was measured after exposure to either standard (5.5 mM) or high-glucose (30 mM) medium. We quantified apoptosis after treatment with small interfering RNA against IGFBP-3 (siRNA:IGFBP-3) in high-glucose medium or in cells that overexpressed IGFBP-3. Oxidative stress was measured in high-glucose medium, in the presence of siRNA:IGFBP-3, or in IGFBP-3-overexpressing cells. IGFBP-3 protein and mRNA expression in LLC-PK1 cells was higher in high-glucose medium than in standard-glucose medium. Exposure to high-glucose medium increased apoptosis, and high-glucose-induced apoptosis was abolished by siRNA:IGFBP-3. IGFBP-3 overexpression induced apoptosis in LLC-PK1 cells. Both high-glucose medium and IGFBP-3 overexpression increased reactive oxygen species, and siRNA:IGFBP-3 reduced this increase. Antioxidant treatment decreased IGFBP-3 expression and apoptosis, whereas oxidative stress from hydrogen peroxide increased IGFBP-3 expression, suggesting that oxidative stress increases IGFBP-3 expression. Our results suggest that increased IGFBP-3 expression by high glucose mediates high-glucose-induced apoptosis in PTEC. Increased oxidative stress from high glucose enhances IGFBP-3 expression, inducing apoptosis. Increased expression of IGFBP-3 by high glucose induces additional oxidative stress, which may result in amplification of hyperglycemic damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。