Erastin-Like Anti-Warburg Agents Prevent Mitochondrial Depolarization Induced by Free Tubulin and Decrease Lactate Formation in Cancer Cells

Erastin 类抗瓦伯格药物可防止游离微管蛋白诱导的线粒体去极化并减少癌细胞中的乳酸形成

阅读:9
作者:David N DeHart, John J Lemasters, Eduardo N Maldonado

Abstract

In Warburg metabolism, suppression of mitochondrial metabolism contributes to a low cytosolic ATP/ADP ratio favoring enhanced aerobic glycolysis. Flux of metabolites across the mitochondrial outer membrane occurs through voltage-dependent anion channels (VDAC). In cancer cells, free dimeric tubulin induces VDAC closure and dynamically regulates mitochondrial membrane potential (ΔΨ). Erastin, a small molecule that binds to VDAC, antagonizes the inhibitory effect of tubulin on VDAC and hyperpolarizes mitochondria in intact cells. Here, our aim was to identify novel compounds from the ChemBridge DIVERSet library that block the inhibitory effect of tubulin on ΔΨ using cell-based screening. HCC4006 cells were treated with nocodazole (NCZ) to increase free tubulin and decrease ΔΨ in the presence or absence of library compounds. Tetramethylrhodamine methylester (TMRM) fluorescence was assessed by high-content imaging to determine changes in ΔΨ. Compounds were considered positive if ΔΨ increased in the presence of NCZ. Using confocal microscopy, we identified and validated six lead molecules that antagonized the depolarizing effect of NCZ. Lead compounds and erastin did not promote microtubule stabilization, so changes in ΔΨ were independent of tubulin dynamics. The most potent lead compound also decreased lactate formation. These novel small molecules represent a potential new class of anti-Warburg drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。