Carvedilol improves liver cirrhosis in rats by inhibiting hepatic stellate cell activation, proliferation, invasion and collagen synthesis

卡维地洛通过抑制肝星状细胞活化、增殖、侵袭和胶原合成改善大鼠肝硬化

阅读:6
作者:Liping Ling, Guangqi Li, Guangchuan Wang, Dongxiao Meng, Zhen Li, Chunqing Zhang

Abstract

Portal hypertension (PHT) is one of the most severe consequences of liver cirrhosis. Carvedilol is a first‑line pharmacological treatment of PHT. However, the antifibrogenic effects of carvedilol on liver cirrhosis and the intrinsic mechanisms underlying these effects have not been thoroughly investigated. The present study aimed to investigate the antifibrogenic effects of carvedilol on liver cirrhosis in vivo and in vitro. Liver cirrhosis was induced in rats by carbon tetrachloride (CCl4) administration for 9 weeks; carvedilol was administered simultaneously in the experimental group. Blood samples were collected for serum biochemistry. Liver tissues were used for fibrosis evaluation, histological examination, immunohistochemistry and western blot analysis. The human hepatic stellate cell (HSC) line LX‑2 was used for in vitro studies. The effects of carvedilol on LX‑2 cell proliferation and invasion were evaluated by Cell Counting Kit‑8 assay and Transwell invasion assays, respectively. The effect of carvedilol on transforming growth factor β1 (TGFβ1)‑induced collagen synthesis in LX‑2 cells and the molecular mechanisms were examined by western blot analysis. The results demonstrated that carvedilol improved CCl4‑induced structural distortion and fibrosis in the liver. Carvedilol inhibited HSC activation, proliferation and invasion. Carvedilol inhibited HSC collagen synthesis through the TGFβ1/SMAD pathway. In conclusion, carvedilol may alleviate liver cirrhosis in rats by inhibiting HSC activation, proliferation, invasion and collagen synthesis. Carvedilol may be a potential treatment of early‑stage liver cirrhosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。