Conclusions
C6orf120-/- rats were susceptible to CCl4-induced liver injury, which may be related to NLRP3 inflammasome and JNK signaling pathway activation.
Material and methods
C6orf120-/- and wild-type (WT) rats were intraperitoneally administered with CCl4 (1 : 1 v/v in olive oil, 2 µl/g). Rats were sacrificed 24 h after CCl4 administration. Liver tissues were collected for H&E, IHC, qRT-PCR, and Western blot analysis.
Methods
C6orf120-/- and wild-type (WT) rats were intraperitoneally administered with CCl4 (1 : 1 v/v in olive oil, 2 µl/g). Rats were sacrificed 24 h after CCl4 administration. Liver tissues were collected for H&E, IHC, qRT-PCR, and Western blot analysis.
Results
C6orf120 gene deficiency may be vulnerable to CCl4-induced acute liver injury in rats as indicated by the high levels of alanine aminotransferase (WT: 388.7 ±55.96 vs. C6orf120-/-: 915.9 ±118.8, p < 0.001) and greater degree of pathological damage. Quantitative reverse transcription polymerase chain reaction showed that the mRNA levels of inflammation-associated cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, in liver tissues were increased in C6orf120-/- rats compared with those in WT rats. Moreover, western blot showed that the protein expression of cytokines nucleotide-binding oligomerization domain leucine rich repeat and pyrin domain containing 3 (NLRP3), caspase-1, IL-1β, nuclear factor-κB, c-Jun N-terminal kinases, and Bax were increased in C6orf120-/- rats compared with those in WT rats. Conclusions: C6orf120-/- rats were susceptible to CCl4-induced liver injury, which may be related to NLRP3 inflammasome and JNK signaling pathway activation.
