LINC00261 Inhibits Esophageal Cancer Radioresistance by Down-Regulating microRNA-552-3p and Promoting DIRAS1

LINC00261 通过下调 microRNA-552-3p 和促进 DIRAS1 抑制食管癌放射抗性

阅读:11
作者:Baolong Yang, Hongbing Ma, Yan Bian

Conclusion

Altogether, our findings indicated that LINC00261 exerts a suppressive effect on EC radioresistance via the competing endogenous RNA network to sponge miR-552-3p and up-regulate DIRAS1 transcription.

Methods

Firstly, radioresistant EC cell lines TE-1-R and TE-5-R were established using TE-1 and TE-5 cells. Subsequently, LINC00261, microRNA (miR)-552-3p, and DIRAS1 expression patterns in EC tissues and adjacent normal tissues and EC cells were evaluated. In addition, survival fraction (SF), colony formation, apoptosis, and γ-H2AX levels were analyzed, followed by the detection of the binding relation between LINC00261 and miR-552-3p and between miR-552-3p and DIRAS1. Lastly, xenograft transplantation was carried out to confirm the effects of LINC00261 on EC radioresistance in vivo.

Objective

Esophageal cancer (EC) represents a life-threatening tumor with an ever-increasing incidence rate. Long intergenic non-protein coding RNAs (LINCs) have also become a topic of interest in EC. In a similar light, the current study aimed to investigate the role of LINC00261 in EC radioresistance.

Results

LINC00261 and DIRAS1 were poorly-expressed in EC tissues and cells, but miR-552-3p was over-expressed. In EC cells with X-ray radiation, over-expression of LINC00261 reduced SF and cell viability, strengthened γ-H2AX levels, and promoted apoptosis, while all these trends were counteracted by miR-522-3p over-expression or DIRAS1 silencing. Mechanistic investigation further validated the binding relation between LINC00261 and miR-552-3p, and between miR-552-3p and DIRAS1. Moreover, LINC00261 over-expression suppressed tumor growth and reduced EC radioresistance in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。