De novo cardiomyocytes from within the activated adult heart after injury

损伤后激活的成人心脏内的新生心肌细胞

阅读:5
作者:Nicola Smart, Sveva Bollini, Karina N Dubé, Joaquim M Vieira, Bin Zhou, Sean Davidson, Derek Yellon, Johannes Riegler, Anthony N Price, Mark F Lythgoe, William T Pu, Paul R Riley

Abstract

A significant bottleneck in cardiovascular regenerative medicine is the identification of a viable source of stem/progenitor cells that could contribute new muscle after ischaemic heart disease and acute myocardial infarction. A therapeutic ideal--relative to cell transplantation--would be to stimulate a resident source, thus avoiding the caveats of limited graft survival, restricted homing to the site of injury and host immune rejection. Here we demonstrate in mice that the adult heart contains a resident stem or progenitor cell population, which has the potential to contribute bona fide terminally differentiated cardiomyocytes after myocardial infarction. We reveal a novel genetic label of the activated adult progenitors via re-expression of a key embryonic epicardial gene, Wilm's tumour 1 (Wt1), through priming by thymosin β4, a peptide previously shown to restore vascular potential to adult epicardium-derived progenitor cells with injury. Cumulative evidence indicates an epicardial origin of the progenitor population, and embryonic reprogramming results in the mobilization of this population and concomitant differentiation to give rise to de novo cardiomyocytes. Cell transplantation confirmed a progenitor source and chromosome painting of labelled donor cells revealed transdifferentiation to a myocyte fate in the absence of cell fusion. Derived cardiomyocytes are shown here to structurally and functionally integrate with resident muscle; as such, stimulation of this adult progenitor pool represents a significant step towards resident-cell-based therapy in human ischaemic heart disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。