Glutamine promotes the proliferation of epithelial cells via mTOR/S6 pathway in oral lichen planus

谷氨酰胺通过mTOR/S6通路促进口腔扁平苔藓上皮细胞增殖

阅读:8
作者:Jiaqi Hu, Zihang Ling, Wei Li, Zhangci Su, Jingyi Lu, Qi Zeng, Bin Cheng, Xiaoan Tao

Background

Although abnormal cell proliferation and apoptosis are associated with the pathogenesis of oral lichen planus (OLP), the exactly mechanism of which is not yet known. It has been reported that glutamine (Gln) can promote cell proliferation and inhibit apoptosis of various tumor cells. This study aims to evaluate the effect of Gln metabolism on the balance of proliferation and apoptosis in epithelial cells of OLP.

Conclusion

Gln metabolism is essential to maintain the balance of proliferation and apoptosis in oral epithelial cells, and inhibition of Gln metabolism may have a beneficial effect on OLP treatment.

Methods

Thirty human OLP specimens and 11 normal controls were stained by immunohistochemistry to detect the levels of proliferation and Gln metabolism related proteins. Then, the critical role of Gln in cell proliferation and apoptosis was determined by Gln deprivation or treatment with glutaminase inhibitor (CB-839) to intervene Gln metabolism in human gingival epithelial cells. Cell proliferation was detected using CCK8, p-mTOR and p-S6 proteins were detected using Western Blot, cell apoptosis and cell cycle were detected using flow cytometry, and cell stress was detected using immunofluorescence.

Results

Compared with normal controls, OLP specimens showed higher levels of Ki-67 and Gln metabolism-related proteins, including Gln transporter (ASCT2), glutaminase (GLS), and pathway proteins (p-mTOR and p-S6). In vitro, Gln promoted cell proliferation and simultaneously upregulated the activity of mTOR/S6 pathway. Moreover, rapamycin, an mTOR pathway inhibitor, could effectively block the Gln-induced cell proliferation. MHY1485, an mTOR pathway agonist, could effectively reverse the decline of cell proliferation under Gln deprivation. In addition, inhibiting Gln metabolism caused the accumulation of intracellular radical oxygen species (ROS) and induced cell apoptosis. However, N-acetylcysteine reversed this state and then decreased cell apoptosis by eliminating intracellular ROS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。