Recognition of hyperacetylated N-terminus of H2AZ by TbBDF2 from Trypanosoma brucei

布氏锥虫的 TbBDF2 识别 H2AZ 的高乙酰化 N 端

阅读:5
作者:Xiao Yang, Xuelei Wu, Jiahai Zhang, Xuecheng Zhang, Chao Xu, Shanhui Liao, Xiaoming Tu

Abstract

Histone modification plays an important role in various biological processes, including gene expression regulation. Bromodomain, as one of histone readers, recognizes specifically the ε-N-lysine acetylation (KAc) of histone. Although the bromodomains and histone acetylation sites of Trypanosoma brucei (T. brucei), a lethal parasite responsible for sleeping sickness in human and nagana in cattle, have been identified, how acetylated histones are recognized by bromodomains is still unknown. Here, the bromodomain factor 2 (TbBDF2) from T. brucei was identified to be located in the nucleolus and bind to the hyperacetylated N-terminus of H2AZ which dimerizes with H2BV. The bromodomain of TbBDF2 (TbBDF2-BD) displays a conserved fold that comprises a left-handed bundle of four α-helices (αZ, αA, αB, αC), linked by loop regions of variable length (ZA and BC loops), which form the KAc-binding pocket. NMR chemical shift perturbation further revealed that TbBDF2-BD binds to the hyperacetylated N-terminus of H2AZ through its KAc-binding pocket. By structure-based virtual screening combining with the ITC experiment, a small molecule compound, GSK2801, was shown to have high affinity to TbBDF2-BD. GSK2801 and the hyperacetylated N-terminus of H2AZ have similar binding sites on TbBDF2-BD. In addition, GSK2801 competitively inhibits the hyperacetylated N-terminus of H2AZ binding to TbBDF2-BD. After treatment of GSK2801, cell growth was inhibited and localization of TbBDF2 was disrupted. Our results report a novel bromodomain-histone recognition by TbBDF2-BD and imply that TbBDF2 may serve as a potential chemotherapeutic target for the treatment of trypanosomiasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。