Chemo-photothermal nanoplatform with diselenide as the key for ferroptosis in colorectal cancer

以二硒化物为关键的化学光热纳米平台在结直肠癌铁死亡中的作用

阅读:4
作者:Kaili Deng, Hailong Tian, Tingting Zhang, Yajie Gao, Edouard C Nice, Canhua Huang, Na Xie, Guoliang Ye, Yuping Zhou

Abstract

Colorectal cancer (CRC) is a prevalent clinical malignancy of the gastrointestinal system, and its clinical drug resistance is the leading cause of poor prognosis. Mechanistically, CRC cells possess a specific oxidative stress defense mechanism composed of a significant number of endogenous antioxidants, such as glutathione, to combat the damage produced by drug-induced excessive reactive oxygen species (ROS). We report on a new anti-CRC nanoplatform, a multifunctional chemo-photothermal nanoplatform based on Camptothecin (CPT) and IR820, an indocyanine dye. The implementation of a GSH-triggered ferroptosis-integrated tumor chemo-photothermal nanoplatform successfully addressed the poor targeting ability of CPT and IR820 while exhibiting significant growth inhibitory effects on CRC cells. Mechanistically, to offset the oxidative stress created by the broken SeSe bonds, endogenous GSH was continuously depleted, which inactivated GPX4 to accumulate lipid peroxides and induce ferroptosis. Concurrently, exogenously administered linoleic acid was oxidized under photothermal conditions, resulting in an increase in LPO accumulation. With the breakdown of the oxidative stress defense system, chemotherapeutic efficacy could be effectively enhanced. In combination with photoacoustic imaging, the nanoplatform could eradicate solid tumors by means of ferroptosis-sensitized chemotherapy. This study indicates that chemotherapy involving a ferroptosis mechanism is a viable method for the treatment of CRC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。