Comparison of biopolymer scaffolds for the fabrication of skin substitutes in a porcine wound model

用于猪伤口模型中皮肤替代物制造的生物聚合物支架的比较

阅读:6
作者:Bronwyn L Dearman, Steven T Boyce, John E Greenwood

Abstract

This study compared three acellular scaffolds as templates for the fabrication of skin substitutes. A collagen-glycosaminoglycan (C-GAG), a biodegradable polyurethane foam (PUR) and a hybrid combination (PUR/C-GAG) were investigated. Scaffolds were prepared for cell inoculation. Fibroblasts and keratinocytes were serially inoculated onto the scaffolds and co-cultured for 14 days before transplantation. Three pigs each received four full-thickness 8 cm × 8 cm surgical wounds, into which a biodegradable temporising matrix (BTM) was implanted. Surface seals were removed after integration (28 days), and three laboratory-generated skin analogues and a control split-thickness skin graft (STSG) were applied for 16 weeks. Punch biopsies confirmed engraftment and re-epithelialisation. Biophysical wound parameters were also measured and analysed. All wounds showed greater than 80% epithelialisation by day 14 post-transplantation. The control STSG displayed 44% contraction over the 16 weeks, and the test scaffolds, C-GAG 64%, Hybrid 66.7% and PUR 67.8%. Immunohistochemistry confirmed positive epidermal keratins and basement membrane components (Integrin alpha-6, collagens IV and VII). Collagen deposition and fibre organisation indicated the degree of fibrosis and scar produced for each graft. All scaffold substitutes re-epithelialised by 4 weeks. The percentage of original wound area for the Hybrid and PUR was significantly different than the STSG and C-GAG, indicating the importance of scaffold retainment within the first 3 months post-transplant. The PUR/C-GAG scaffolds reduced the polymer pore size, assisting cell retention and reducing the contraction of in vitro collagen. Further investigation is required to ensure reproducibility and scale-up feasibility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。