Reactivation of embryonic nodal signaling is associated with tumor progression and promotes the growth of prostate cancer cells

胚胎节点信号的重新激活与肿瘤进展有关,并促进前列腺癌细胞的生长

阅读:4
作者:Mitchell G Lawrence, Naira V Margaryan, Daniela Loessner, Angus Collins, Kris M Kerr, Megan Turner, Elisabeth A Seftor, Carson R Stephens, John Lai; APC BioResource; Lynne-Marie Postovit, Judith A Clements, Mary J C Hendrix

Background

Nodal is a member of the transforming growth factor β (TGFβ) superfamily that directs embryonic patterning and promotes the plasticity and tumorigenicity of tumor cells, but its role in the prostate is unknown. The goal of this study was to characterize the expression and function of Nodal in prostate cancer and determine whether, like other TGFβ ligands, it modulates androgen receptor (AR) activity.

Conclusions

An aberrant Nodal signaling pathway is re-expressed and functionally active in prostate cancer cells.

Methods

Nodal expression was investigated using immunohistochemistry of tissue microarrays and Western blots of prostate cell lines. The functional role of Nodal was examined using Matrigel and soft agar growth assays. Cross-talk between Nodal and AR signaling was assessed with luciferase reporter assays and expression of endogenous androgen regulated genes.

Results

Significantly increased Nodal expression was observed in cancer compared with benign prostate specimens. Nodal was only expressed by DU145 and PC3 cells. All cell lines expressed Nodal's co-receptor, Cripto-1, but lacked Lefty, a critical negative regulator of Nodal signaling. Recombinant human Nodal triggered downstream Smad2 phosphorylation in DU145 and LNCaP cells, and stable transfection of pre-pro-Nodal enhanced the growth of LNCaP cells in Matrigel and soft agar. Finally, Nodal attenuated AR signaling, reducing the activity of a PSA promoter construct in luciferase assays and down-regulating the endogenous expression of androgen regulated genes. Conclusions: An aberrant Nodal signaling pathway is re-expressed and functionally active in prostate cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。