Fluorofenidone affects hepatic stellate cell activation in hepatic fibrosis by targeting the TGF-β1/Smad and MAPK signaling pathways

氟非尼酮通过靶向 TGF-β1/Smad 和 MAPK 信号通路影响肝纤维化中的肝星状细胞活化

阅读:4
作者:Yu Peng, Li Li, Xin Zhang, Mingyan Xie, Congying Yang, Sha Tu, Hong Shen, Gaoyun Hu, Lijian Tao, Huixiang Yang

Abstract

The aim of the present research was to study the therapeutic impacts of fluorofenidone (AKF-PD) on pig serum (PS)-induced liver fibrosis in rats and the complex molecular mechanisms of its effects on hepatic stellate cells (HSCs). Wistar rats were randomly divided into normal control, PS and PS/AKF-PD treatment groups. The activated human HSC LX-2 cell line was also treated with AKF-PD. The expression of collagen I and III, and α-smooth muscle actin (α-SMA) was determined by immunohistochemical staining and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Western blotting and/or RT-qPCR analyses were used to determine the expression of transforming growth factor (TGF)-β1, α-SMA, collagen I, mothers against decapentaplegic homolog (Smad)-3, extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK). AKF-PD attenuated the degree of hepatic fibrosis and liver injury in vivo, which was associated with the downregulation of collagen I and III, and α-SMA at the mRNA and protein levels. In vitro, AKF-PD treatment significantly reduced the TGF-β1-induced activation of HSCs, as determined by the reduction in collagen I and α-SMA protein expression. The TGF-β1-induced upregulation of the phosphorylation of Smad 3, ERK1/2, p38 and JNK was attenuated by AKF-PD treatment. These findings suggested that AKF-PD attenuated the progression of hepatic fibrosis by suppressing HSCs activation via the TGF-β1/Smad and MAPK signaling pathways, and therefore that AKF-PD may be suitable for use as a novel therapeutic agent against liver fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。