Peptide microarray analysis of in-silico predicted B-cell epitopes in SARS-CoV-2 sero-positive healthcare workers in Bulawayo, Zimbabwe

津巴布韦布拉瓦约 SARS-CoV-2 血清阳性医护人员的 B 细胞表位预测肽微阵列分析

阅读:6
作者:Arthur Vengesai, Thajasvarie Naicker, Herald Midzi, Maritha Kasambala, Victor Muleya, Isaac Chipako, Emilia Choto, Praise Moyo, Takafira Mduluza

Abstract

Immunogenic peptides that mimic linear B-cell epitopes coupled with immunoassay validation may improve serological tests for emerging diseases. This study reports a general approach for profiling linear B-cell epitopes derived from SARS-CoV-2 using an in-silico method and peptide microarray immunoassay, using healthcare workers' SARS-CoV-2 sero-positive sera. SARS-CoV-2 was tested using rapid chromatographic immunoassays and real-time reverse-transcriptase polymerase chain reaction. Immunogenic peptides mimicking linear B-cell epitopes were predicted in-silico using ABCpred. Peptides with the lowest sequence identity with human protein and proteins from other human pathogens were selected using the NCBI Protein BLAST. IgG and IgM antibodies against the SARS-CoV-2 spike protein, membrane glycoprotein and nucleocapsid derived peptides were measured in sera using peptide microarray immunoassay. Fifty-three healthcare workers included in the study were RT-PCR negative for SARS-CoV-2. Using rapid chromatographic immunoassays, 10 were SARS-CoV-2 IgM sero-positive and 7 were SARS-CoV-2 IgG sero-positive. From a total of 10 SARS-CoV-2 peptides contained on the microarray, 3 (QTH34388.1-1-14, QTN64908.1-135-148, and QLL35955.1-22-35) showed reactivity against IgG. Three peptides (QSM17284.1-76-89, QTN64908.1-135-148 and QPK73947.1-8-21) also showed reactivity against IgM. Based on the results we predicted one peptide (QSM17284.1-76-89) that had an acceptable diagnostic performance. Peptide QSM17284.1-76-89 was able to detect IgM antibodies against SARS-CoV-2 with area under the curve (AUC) 0.781 when compared to commercial antibody tests. In conclusion in silico peptide prediction and peptide microarray technology may provide a platform for the development of serological tests for emerging infectious diseases such as COVID-19. However, we recommend using at least three in-silico peptide prediction tools to improve the sensitivity and specificity of B-cell epitope prediction, to predict peptides with excellent diagnostic performances.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。