Spatiotemporal Tracking of Brain-Tumor-Associated Myeloid Cells in Vivo through Optical Coherence Tomography with Plasmonic Labeling and Speckle Modulation

通过具有等离子体标记和斑点调制的光学相干断层扫描对体内脑肿瘤相关髓系细胞进行时空追踪

阅读:4
作者:Elliott Daniel SoRelle, Derek William Yecies, Orly Liba, Frederick Christian Bennett, Claus Moritz Graef, Rebecca Dutta, Siddhartha Mitra, Lydia-Marie Joubert, Samuel Cheshier, Gerald A Grant, Adam de la Zerda

Abstract

By their nature, tumors pose a set of profound challenges to the immune system with respect to cellular recognition and response coordination. Recent research indicates that leukocyte subpopulations, especially tumor-associated macrophages (TAMs), can exert substantial influence on the efficacy of various cancer immunotherapy treatment strategies. To better study and understand the roles of TAMs in determining immunotherapeutic outcomes, significant technical challenges associated with dynamically monitoring single cells of interest in relevant live animal models of solid tumors must be overcome. However, imaging techniques with the requisite combination of spatiotemporal resolution, cell-specific contrast, and sufficient signal-to-noise at increasing depths in tissue are exceedingly limited. Here we describe a method to enable high-resolution, wide-field, longitudinal imaging of TAMs based on speckle-modulating optical coherence tomography (SM-OCT) and spectral scattering from an optimized contrast agent. The approach's improvements to OCT detection sensitivity and noise reduction enabled high-resolution OCT-based observation of individual cells of a specific host lineage in live animals. We found that large gold nanorods (LGNRs) that exhibit a narrow-band, enhanced scattering cross-section can selectively label TAMs and activate microglia in an in vivo orthotopic murine model of glioblastoma multiforme. We demonstrated near real-time tracking of the migration of cells within these myeloid subpopulations. The intrinsic spatiotemporal resolution, imaging depth, and contrast sensitivity reported herein may facilitate detailed studies of the fundamental behaviors of TAMs and other leukocytes at the single-cell level in vivo, including intratumoral distribution heterogeneity and roles in modulating cancer proliferation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。