Conclusion
No recipients acquired TA-GVHD after lymphocyte transfusion subjected to gamma- or x-rays, showing that x-rays inactivate as well as gamma rays and are suitable for irradiating whole blood.
Methods
A haploidentical transplantation mouse model was established to simulate TA-GVHD with Balb/c mice as donors and hybrid F1 CB6 mice (Balb/c × C57) as recipients. Spleen cells from Tg-Fluc+ Balb/c mice were isolated and irradiated with gamma-rays and x-rays. Lymphocyte activation, apoptosis and proliferation post phorbol 1 2-myristate 1 3-acetate (PMA) stimulation were evaluated. After transfusion, we monitored Fluc+ lymphocytes daily by bioluminescence imaging. Recipients were euthanized on day 21, and tissues were examined pathologically and for inflammatory cytokines.
Results
The viability of gamma- or x-ray irradiated lymphocytes decreased significantly with slight changes in proliferation in vivo after transfusion. Compared with the non-irradiated group, both the gamma- and x-ray irradiated groups showed significantly decreased clinical scoring and inflammatory cytokine levels. The fluorescence intensity of the body and target organs was reduced after irradiation.
