The mechanism of attenuation of epithelial-mesenchymal transition by a phosphodiesterase 5 inhibitor via renal klotho expression

磷酸二酯酶 5 抑制剂通过肾脏 klotho 表达减弱上皮-间质转化的机制

阅读:18
作者:Seung T Han, Jae S Kim, Jun Y Lee, Min K Kim, Jin S Yoo, Byoung G Han, Seung O Choi, Jae W Yang

Abstract

Phosphodiesterase-5 (PDE-5) inhibitors induces vasodilation in several organs by blocking cyclic GMP (guanosine monophosphate) degradation. However, the existence of alternative mechanism of action in case of an impaired nitric oxide (NO) system remains controversial. Previous studies suggested that decreased NO bioavailability may result in the downregulation of klotho expression, but the relationship between klotho and NO remains obscure. Therefore, we investigated whether a PDE-5 inhibitor could preserve epithelial-mesenchymal transition (EMT) and relationship exists between the NO and renal klotho expression. Ten-week-old SD rats (N = 24, 200 g, male) were divided (N = 6) into four groups, which received: A LSD, L-NAME 1 mg/mL in drinking water, Udenafil 5 mg/kg subcutaneously and both for 4 weeks. Urine nitrate/nitrite, NGAL (Neutrophil gelatinase-associated lipocalin), and cGMP were measured using ELISA. Kidney was subjected to evaluate PCNA (proliferative cell nuclear antigen), α-SMA (smooth muscle cell antigen), E-cadherin, and klotho expression. Urine cGMP decreased after treatment of PDE-5 inhibitor compared with control due to blocking degradation of cGMP (P < .05, control vs Udenafil and L-NAME with Udenafil groups). Urine NGAL increased after treating of L-NAME and attenuated after using PDE-5 inhibitor (P < .05, control vs L-NAME and L-NAME with Udenafil). PCNA, α-SMA, and E-cadherin (EMT markers) increased after L-NAME treatment and normalized after using PDE-5 inhibitor. Klotho expression showed trend to increase in the L-NAME with PDE-5 inhibitor group compared with the L-NAME group, however, eNOS expression did not change after treatment of L-NAME or PDE-5 inhibitor compared with control. PDE-5 inhibitor alleviates EMT in the kidney via klotho modulation independent of the NO system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。